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An autononwus star identification algorithm is described that
is simple and requires less computer resources than other such
algorithms. In simulations using an 8 x 8 degree field of view
(FOV), the algerithm identifies the correct section of sky on 99.7%
of the sensor 01 ientations where spatial accuracy of the imaged
star s 1 pixel (56.25 arcseconds) in standard deviationand the

apparent priphtness deviates bY 0.4 units stellar magnitude. This
compares very favorably with other algorithinis in the literature,
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1. INTRODUCTION

The loss of reliable guidance control information
for a deep space probe is potentially mission
threatening. Such an event can occur due to temporary
power failure or system malfunctioning/damage (e.g.,
tumbling). To reduce this possibility, space probes arc
equipped with an autonomous attitude determination
system. The most accurate of these systems make usc
of stellar positions to generate the attitude estimations
necded for initialization, system malfunction, or as
an independent verification for the current attitude
estimate. Asstars arc typically seen in all possible
orientations, fixed sensors can be used to image a
portion of the sky. Thestars arc extracted from the
image and arec used to establish a correspondence
to a portion of sky in an onboard star catalog. As
long as the system is able to match at least two of the
sensor stars, there is sufficient information to reliably
determine the attitude of the spacecraft with respect to
the reference frame of the catalog [13].

Many different strategies can bc employed to
implement an autonomous attitude determination
system. Idcally, the systcm should be capable of
obtaining an attitude given an arbitrary star ficld
without any a priori knowledge of the true orientation
of the sensor (fully autonomous). ‘I’ his type of system
has a number of obvious advantages. First, it alows
the probe to recover from a total loss of attitude
knowledge, improving mission reliability. Second, the
probe can make usc of fixed sensors which arc less
susceptible to component failure. Finaly, attitude
can be estimated more accurately as the oricntation
of fixed sensors with respect to the spacecraft can be
known more reliably than a movable sensor.

The difficulty in obtaining a fully autonomous
attitude estimation system is in actualy identifying
the stars in the sensor field. Once a correct match
is made, there arc reliable methods for generating a
good attitude estimation [11]. To gencrate a pairing
between an imaged section of the sky and a set of
known catalog stars, the identification algorithm must
match the. sensor image stars with a subgroup of the
catalog stars that best fits the image. A number of
star identification techniques have been proposed to
accomplish this, some of which have been putto actual
usc on board space.cl aft [2-5, 7-10, 12].

The existing fully autonomous, star identification
algorithms can roughly be partitioned into two classes.
Both classes make usc of a databasc that consists of
a catalog of known star characteristics (location and
apparent brightness) and data structures that aid in
pairing sensol stars to the appropriate catalog stars.
The magjor differ ence in the two classes stern from thei
respective approach in identifying the sensor sky field.

The first class of algorithms tend to approach star
identification as an instant.c of subgraph isomorphism
[1]. in this case, thestars arc treated as vertices
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- ina giaph whose. cdges correspond to the angular
scparation between neighboring stars that could
possibly share the same sensor field of view (FOV).
An identification arises when the resultant graph
obtaincd from the scusor image (or some portion

of ityis uniquely identificd with a portion of the
database. Typically the data structures employed by
this technique include lists of star pair distances or
triples (perhaps also employing brightness information)
from the catalog that arc used to aid in constructing
asubgraph similar to the sensor graph. As sensor
accuracy is not perfect, there. arc often numerous pairs
or triples that match a given sensor pair or triple. As
more parts of the sensor graph arc matched, many

of the database subgraphs can be eliminated until

(in principle) only a single subgraphremains [2-4, 9,
10,12].

The algorithms found in the second class tend to
approach star identification more in terms of pattern
recognition or best match [5, 7].Each star in this
case, has associated with it a well-dc.fincct pattern or
signature that can be determined by the surrounding
star field (at least to some degree). A.. each star now
has an individual pattern, finding the nearest neighbor
pattern is sufficient for star identification provided
that the patterns arc close enough. The data structures
usced to implemen t this approach often include Jookup
and hash tablesto facilitate finding the best matching
pattern.

We propose a simple algorithm using the sccond
approach that is computationally efficient and has
modest memory requircments. Our approach is
based on the observation that the distribution of
stars around any given staris essentially random,
there are no preferred  configurations. Assuming  that
this is the case and allowing that a reference frame
can be found bascd solely on the neighboring star
ficld, a simple comparison with the known patterns
of sclected reference stars is sufficient to quickly
identify asensor pat tern with its catalog counterpart.
The following sections describe the agorithm and
its databasc, demonstrate the performance of the
algorithm in simulations, and provide an analylic
model to determine good values for parameters and
cnhance our understanding of its performance.

il. AL GORITEHIM D ESCRIPTION

In this section wc initialy specify an abstract
description of a star pattern (jts signature) and the
matching critcria used to sclcct the nearest ncighbor.
For p]-attic.a reasons, we. aso provide a number of
implementation details regarding database gencration
anddatastiuct ut ¢s suit able for efficient matching,
The algorithm for determining a sensor-catalog
pairing is then presented along With its J) suedocode
implementation. In addition, wc aso describe a
number of modifications to the algorithm that were

found to perform quite satisfactorily during the
simulations. The actual performance results are
presented in Section 1.

A. Pattern Generation and Matching

The star identification agorithm that wc propose
involves generating a set of patterns for a sclected
group of reference stars whose locations arc known in a
standard reference frame. This pattern set congtitutes
a database which is used to compare patterns derived
in a similar way from the sensor image. As each star
has its own pattern, finding a suitably closc match to
apattern is equivalent to pairing the two stars for
the purpose of identification. For convenience, we
assume that the index of a particular pattern is the
star from which the pattern was derived. For instance
pattern pat indicates the pattern generated from stari.
Typically we usc i when referring to database stars and
J when the star is from the sensor image. When either
type of star could be possible, we usc r for reference
star. The patterns arc constructed in the following
manner (schFigs‘.j, 4, and 5).

1) Choosc areference star r for which a pattern is
to be identified with.

2) Relocate r and part of the surrounding sky,
sky(r, pr), within patternradius pr,so that r lies a the
North Pole.

3) Orient a grid of size g X g on r and
its closest neighboring star in sky(r, pr),
close_neighbor(r,sky(r, pr), br), outside a buffer
radiusbr.

4) Derive a g? length bit vectorv]0..g? - 1], for the,
paitern so that each grid cell(i, j) that contains a star is
1on bit j*g +- i, and those without arc O.

To determine which pattern in the database is
associated with a particular sensor pattern (cxtracted
from an image vsing above st cps 1- 4), the catalog
pattern that has the greatest number of non-zero cells
in common (logical AND between the two vectors) is
identified. If the number of shared cells between the
best catalog pattern and the sensor pattcrn is greater
than some threshold, the reference star of the catalog
pattern is paired with the reference star of the sensor
pattern.

More formally, given a pattern for reference star j
in the Sensor image pat;, and a set of patter'lls {pat; },
fromi t hc database 1), we need to find

mizxx malch(palj, pat;) )

where
g-1

match(pat;, pat;) = >_: (pat;[k] &pat;[k])
-0

and & is the logical ANI) operation.
"fo prevent spurious matchings with sensor stars
or objects not in 1), a thresholdis employed so that
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big. 1. Pauels A-1) show how pattern vector is derived for
reference starr in panel A. All stars in panel A within pattern
radius pr (area desct ibed by sky(r, pr)) arc relocated so r is at
North Pole as shown in panel B. Panel C shows grid alligned on
close_neighbor(r, br), the nearest neighbor outside radius br. All
stars except reference star arc projected down on gr id, Panel 1)
shows resultant bit vector for pattern. Equivalent representation of
bit vector is to simply indicate the “on” bits (shaded cells) so that
pattern from 1) would be (5,7, 18,26,32,40,67,75). We refer to this
representation as “sensor pattern vector”.

pairing only occurs provided the maximum match value
is unique and greater than the threshold. As presently
described, the algorithm is expensive to im plement.

I the next lwo subsections wc discuss an equivalent
representation that is computation ally superior.

B.Database Generation

To facilitate analysis and understanding of the
implementation details regarding the database, wc
introduce some terms for stars in different reference
frames or that have special uses.

Visible stars (V).'] 'hose stars or objects that can
actually be imaged by the sensor.

Reference stars (R). A subset of V contained in the
databasc used onboard the spacecraft, The star
Jocations in this sct arc in a standard reference frame
and arc. used in cstimating the attitude.

Sensor stars (S). The set of detected objects on the
sensor Image plane. This includes a subset of V and
spurious nonstar items such as sensor noise. 1.ocations
arc defined in terms of the reference frame of the
SCNSOI .

The set V is meant to indicate the real sky and all
the objects in it that the sensor might rccognize as
stars. Wec can approximate V with those stars found
inastandard Sky catalog whose apparent brightness
when cortected for the sensor is greater than the
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Iig. 2. Star distribution over celestial sphere Plot points
represent number of 7.5 magnitude stars or brighter in circular
4.0 deg 'OV sampled at 0.5 deg increments.

minimum sensitivity of the sensor [5]. The stars in our
approximation of V can then serve as the base set for
selecting the set of known reference stars, R.
Generaly, some of the starsin V arc not suitable
for’ navigation purposes. Many of them will be
binary stars or have varijable brightness which cause
difficulties during identification. More importantly, the
distributjon. of stars in V varies significantly over the
sk, (scc}l"ig 2)), and therefore incorporating all the
suitable starSm R could bias the. identification routine
and seriously degrade its performance. In order to
implement an unbiased identification routine for a fully
autonomous att itude determination systcm, R should
be chosen so that itis relatively uniform acrass the
cclestial sphere. Yinally, for memory and performance
reasons, R should contain as fcw stars as possible to
achicve the desired recognition rate.
The approach wc take in constructing R isto
determinc @ minimum number of reference stars
« that we require to beimaged in any arbittary
sensor orjentation. 1o achieve an unambiguous
attitude estimation, ¢ has to be at least two. Of
course the actual sensor minimum sensitivity ms
(the apparentmagnitude below which a star will not
berecognized), Jnay not insure that every section of
sky will necessarily contain even two stars. This will
ultimately dcter mine the best possible recognition

(5]
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rate. However, assuming that the sensor will support at
, lcast '« stars per sensor orientation, a number of othe
factors will influence the size of a.

The most important of these factors are the
expected level of noise incorporated in the image
and the confidence level desired from the star
recognition routine. Higher levels of noise that
degrade the position and brightness measurements
of the imaged stars will cause greater problems for
recognition. Stars may bc lost or added spuriously
and the dcar case in positional accuracy could seriously
interfere wlthJJ&signat urc of the reference star (i.e.,

¢ the'close_ncighbor(yisky(j)) function could return
the wrong“ifcarbyst/ar thus orienting the pattern in
Z,—B.adifrcrcnt direction). This being the case, a larger
f’_ number of slars in R for a section of sky will increase
the likelihood that & lcast two can be identified
correctly. The result of these factors is that the actual
value for ¢ is likely to be significantly higher than the
minimum vaue (2) required for attitude estimation
(for our simulation ancl testing of the agorithm, we set
o =10 for instancc).

Any of a number of methods could be used for
determining which stars to include in R. For our
purposcs however, arclatively smple procedure
is sufficient. After discarding binary stars whose
ncighbor may degrade the image and variable stars, an
incremental, uniform scan is made across the celestial
& sphere and the brightest « stars within the pattern
«-radius pr, of the sensors boresight arc added at each

orientation if they arc not already elements of R. The
only constraint placed cm the selection of stars was to
require that they be separated by greater than a fixed
value, €from any other vicwable star. This was done
for the same. reason that unsuitable binary stars arc
not included. No attempt was made to insure that no
more than the minimum were retained. Some sections
of the sky could have many more stars than ¢ since no
attempt was made to remove possibly redundant stars.

Once R has been constructed, a pattern is
generated for cach of its elements. “To accomplish this,
the visible stars with in the. pattern radius pr, of each
reference stiar in R arc extracted from the visible star
catalog. These are then used to build the bit vector
(sec Fig. 1). 1! isimportantto note that the patterns
consist of more. than just the stars in R, but include
any star that is likely to be imaged. The set of dll
pattern vectors and the reference stars of R constitute
the database I). The structure. of the patter n vectors as
described in Section 11A is unsuitable for an cfficicnit
matching oper ation and consumes more memory than
needed (assuming that g? is much greater than the
average number of stars per pattern).

Instcad of a bit vector, the pattern vectors arc
incorporated into alookup table, 1,'1". The original
pattern vector ccll locations serve as the table index.
Yor each star k in the pattern pat (a1 in the bit
vector) forreference star i inR, i is entercd into the

P
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v

4

Sensor Patrern Lookup Table Star Countecs
(*en” bil locations) {pattern xtarx) (star~couant)
T »<1,66,77,..> 13
21
9-1
* <19, {49,.> 6.1

~
<14, 29,43, ...> 21
149.1
1
- < 12,400, . >

Fig. 3. Locations of 1 bitsin SENSOr pattern (integers ShOWN in
equivalent sensor pattern vector) used to index entries of lookup
table. Entries consist of database stars that aso contain a 1 in the
same cell location. For instance, reference stars 1, 66, 77 dl
contain a 1 in bit location 14. Hach indexed entry in lookup table
isa match and associated star counters are each incremented by
one. After completing the process for al ccll locations, star
counter with highest value is maximum snatch (star 1 in this case).

table at the cell number of the bit for star k. The /th
entry in the table. contains a list of all starsin R that
have the /th bit in their associated pattern vector set
a the value 1. 1o find and calculate the maximum
match for a sensor pattern pat., wc simply examine
the table at each bit location in patwhere a 1 occurs
and increment a counter for each reference star listed
there. At the end of this procedure, the reference
star counter with the highest vaallecidithc pattern in
D closest to the sensor pattern IT«‘jg,f}}Icmonslralcs this
technique. T

It is quite trivial to sce that the representation of
the patterns in the lookup table 1.T' and the original
bit vectors arc equivalent (scee.g., Fig. 1). It is also
apparent that the technique to determine the maximum
match is sufficient to implement the procedure outlined
in Section 11A.

C.Grid Algorithm

Once D has been constructed the actual
identification process is quite simple. The input to
the grid algorithm is a sensor image S. A star jin S
has information regarding its position on the sensor
and its apparent brightness. Forconvenience we
assume that Sis ordered with star j being of greater
or equal brightness to star j + 1. ldedlly the first o
stars in S would be those whose signature is included
in . lesting al of the sensor stars in this case would
increasc the risk of generating spurious matches
(maximuom matches of sensor stars which are either
not in B or identificd with the wrong star). Duc to
noise however, somec of the stars shared by S and D
may no longer be among the brightest « so that some
confidence factor ¢ >1, is employed. I esting cev sensor
stars improves the likelihood that wc will find most of
the stars shared by S and 1).

The testing process is simply determining if the
maximum match value for sensor pattern patis greater
than the threshold min mat. If it is, the reference
stars for the scnsor pattern and its catalog match
arc tentatively paired. Thisis done for each of the
first carstars in S. As an additional precaution, wc
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perform a consistency check on al of the tentatively
identified stars. “I’his verification step requires that a
tentatively identified star bc located in the same FOV
area as other such stars. The verify function takes in
al tentatively identified stars and determines which
matches arc spurious.

To remove the spurious matches, wc examine the
location of the matched catalog stars. If al the matches
arc correct, the locations of the reference stars should
bc clustered in an area no greater than that covered
by a single FOV. We assume that any spurious matches
arc randomly distributed across the sphere making it
unlikely that a larger cluster of spurious reference stars
occurs. The verify function looks for the area with the
largest cluster of matched stars and removes any star
mate.hcs outside this area. In the event that there arc
two equally sized star clusters, the agorithm reports
failure,

Fig. 4¥§'s a table of all parameters used in the
grid algoTithm. “I"he value of the pattern radius pr,
need not bc the same sizc asthe FOV. Typicaly
wc usc the value of the smallest FOV dimension as
the pattern diameter. This increases the number of
stars required for R but reduces the likelihood that
the. reference stars are. all located at the edge of the
sensor where accuracy is lowest and only a portion
of the star pattcrn can bc generated. The buffer
radius, br is uscd to insure that the close neighbor
star provides a reliable coordinate system for pattern
determination. The closer this star is to the reference
star, the more positional noise will effect the ultimate
pattern orientation. The min_mat value is used to
limit the number of spurious star identifications
and reduce the likelihood of misidentificat ion. Only
acatalog pattern with this number of matches or
more is identified with a sensor pattern. The anaysis
section provides a reasonable basis for the values used.
1 ‘nally, the grid resolution parameter g provides some
additional control over identification rates. 1 Jccreasing
the resolution allows for cell matching in higher noise
cnvitonments at the cost of more spurious matches.

A list of cach function callused in he grid
algorithm and its purpose is provided ifjltig. § The
border routine is used to indicate how dosc stars arc
to tile cdge of the sensor. Wc usc this routine to insure
that the d istance to the close neighbor is Icss than the
distance to the edge of the sensor. No matching is
attempted on stars that don't mcct this condition. This
aids inreducing the number of false patterns which wc
check. The remaining functioncalls arc discussedin
prior scctions.

Finally we provide a high level description of
thegrid agorithm in pseudocode. 1*hisis shown
inlig. (J The input to the grid algorithm is a set
Sof locations of objects on the sensor plane and
their associated apparent brightness. Thesc itcms
arc ordered by brightness, and for the objects likely
to bein the star catalog, wc for m their pattern and
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Fig. 4. Grid algorlthm parameters and descriptions,

Grid Algorithm Function

... Function —Pu_rmx — =

border(r) Retrrns bow far reference star r s from Lhc
o sensarbonder, -

skx(r, pr) Rem a list of all the stary WId\m prof star

r —
Rewnu the jib clasest n(ighbodng star 1o 7
from thetist! that is funthes away thanbe.
Retnrs the bit vector (signature) for star r
whese Lis a Uise of nearby stars, J is the close
neighbor ysed foe pattero orientation, and g
isthe size of thegrid .
Determines the star in LT with the gmms(
number of marches. Jf the value is Jess than
k it seturns -1, else it retutus the patiern
Aidentification number,

Determines which elemcnts of the wntative-
ty idevuified stawy in id are in the same fov in
/2 and share thie sane distance properties of
the sensor stars in {1, 10 there are two or
more verified stars the :d anay i retonwed
otherwise a NUTLI,

clove_neighbor(r, 1, br, ) )

pattern(r. 1,j, &)
;ml'r_m(ud; (p.LT, k)

verpy (12 iy

Fig. 5. Grid algorithm functions and their purpose.

procedure grid_id(S, 1)
begin
foci=1tocado
1= sky(8i], pr)
close_neighbori 8145t o] br,1)
ft distance(Sli), j) < bardzr(S[l])
p=paem(Sfil. L, J, 2)
Y idli] . max_match (p, 11 It, min_mat)
end
k= verify(S, Dur, id)
it k<2 return NULLL

else retunn id
ead .

Fig. 6. Grid identification algorithm.

compare it [as described earlier) with those in the
databasc 1) in hopes of generating a good match. “1'hose
sensor stars whose pattern has more than min_mat
matches with a catalog arc tentatively identified and
the appropriate rcference star index is recorded in

the array id. After ail the brightest ¢ « stars in the
image arc checked, those identificd arc sent on to
verify for a final consistency check. The last step in
attitude estimation would be to return the sensor frame
locations of each identified star and its corresponding
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. - referehce frame locations to another procedure so that

the atitude could bc estimated.

A number of simple modifications can be made to
the grid algorithm that tend to improve recognition
rate at the cost of a dlightly higher number of spurious
identifications. The easiest modification to make
is simply to remove the first if statement shown in
Fig. 6. Even for stars close to the cdge of the sensor,
at least 50% of the time the close neighbor star
used for orientation should be in the sensor image.
Another worthwhile modification is to consider
forming patterns using other neighboring stars. The
routine wc use allows us to rank the neighbors. If
we assume that noise may have provided the wrong
close ncighbor in determining the signature of astar,
getting the next closest neighbor may allow for a
match. The modification wc make is to make a ncw
pattern with the second best closc neighbor if the first
pattern did not provide a match value greater than
thet hreshold. ] ‘he. recognition rate for our proposed
star identification algorithm and the modifications arc
presented in the next section.

1. SIMULATIONS

To determine how well the grid algorithm
performed, a number of simulations were conducted
to measure the identification rate under a variety
of different noisc conditions. The platform used in
star identification testing was developed by us for
the Auto non ious Feature and Star Tracking group
(AVAST) at the Jet Propulsion | .aboratory (JPL),
California Ingtitute of “Technology. It is an X-Windows
cnvironment designed to evaluate and compare star
identification techniques. It allows testing with an
arbitrary star catalog for a number of user-specified
scnsor configurations and noise levels. For these
experiments we made use of a single star catalog with
stellar magnitudes ranging down to 8.0 provided by
AFAST.

The sensor configuration used for the experiments
repor ted her ¢ made use of an S x S degrec FOV
with an image plane consisting of 512 x 512 pixels
S0 that each pixcl subtends a square area of about
Tmin (56.25 arc seconds). The minimum sensitivity
of the sensor was sct a ms= 7.5 units apparent
stellar magnitude. Any observed star whose apparent
brightness (including, noise) that falls below this
threshold wasnotimaged. The addition of noise to the
stars (standard deviation of 0.4 units apparent stellar
brightness) allowed dimmer stars to actually appear
during the simulation and for stars brighter than rs
to belost. This resulted in the addition of about 4
unknown stars and the loss of nearly 5 expected stars
to the sensor image per section of sky viewed. No
attempt was made to limit the number of stars actually
imaged by the sensor so that the numnber of itemsin S

varied considerably de.pending on the actual section of
sky the sensor was imaging.

Along with the changes made to observed
brightness for cach star, positional noise was included
in the imaged section of the sky. This sourcce of noise
is duce to the optical properties Of thelens Of the
sensor and the star extraction algorithms used to
derive the location of an object. Typically these vaues
arc reported by the sensor manufacturer in terms of
pixels and we follow that convention here. Again,
random Gaussian noise is added to the projected
location of the imaged star on the sensor plane. This
noise results in differences between the viewed star
position (on the sensor plane) and the projected
coordinates obtained by the colinearity equations [3].
We arc interested in examining the performance of the
grid agorithm at various levels of this type noise so
the the standard deviation (in pixels) is given with each
experiment.

In addition to the noise added when viewing a
scction of the sky, there arc inaccuracies present
in any approximation of V that wc also modeled.

Since standard star catalogs incorporate some small
amount of error, wc added noise to each star prior
to its inclusion in 1) either in R or in a pattern. A
small amount of both position and brightness noise
(0.5 s, 0.1 magnitude; 1 sigma) arc added to each

star when constructing the database 1). The actual
stars for R arc selccted with the perturbed values.
This is accomplished by a uniform 0.5 deg increment
scan of the star catalog, selecting the k= 10 brightest
stars within pr =. 4dcg of each orientation provided
they arc not closer together than e== 5 pixels (when
projected onto the sensor image plane). This resulted
in about 13)000 stars in R or about one third of the
stare from the catalog that were brighter than 7.5 units
magnitude apparent brightness.

To rotate and orient the neighboring star field to
the North Pole wc usc quaternion algebra (a good
explanation can be found in {13]). These can be
derived quite easily from either the reference or sensor
frame coordinates.The location of each star in the grid
can than be determined by projecting their location
on the x - y planc (assuming the z-axis is the North
Pole). The pattern radius pr is used to normalize the
value and the actual cell location assigned for star

r=-(x,y,z)is

cell(x, y) = (g* <'2;, + %)’g* <’2;};r4 ;>)
@)

The cell indices can then be used to specify the bit
vector as described carlicr (step 4).

The grid algorithm was implemented in C
using optimization level 02. The experiments wet €
cond ucted on a SPARCstat ion 5. No cffort was made
to increasc the time performance of the agorithm
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SO that anumaber of incfficiencies exist (mainly due

to the collection of statistics). The reported run time
values are the average over the total run and only
measure the time spent while actually executing the
grid agorithm. The values were obtained with the Unix
clock() call. The other statistics reported in this section
also represent averages and the value for each test is
taken over 10,000 uniform random sensor orientations.

( tloas up bply. )

A. Experiment 1

This simulation examines the expected performance
for our initial implementation of the grid algorithm.
the size of Ris 13,022 stars, each with an average of
249 stars per pattern. The size of Dis easily calculated
from these two valucs. The location of each star in R
requires 2u, where u is the number of bytes needed
for the desii cd accuracy. in addition, the identification
number of each reference star must be entered into
the lookup table 1.T, for each star in its associated
pattern resulting in 24.9u. 7'hc total storage required
for D is then 13,022+ 26.9u or, if the desired accuracy
istwo bytes about 700 Kbit of memory. The grid
resolution g, for these experiments was set at 40 and
the number of matches required for identification
min_mat was set a 7.

Figs. 7-10 show how four performance measures
change as the amount of positional noise added to
the viewed image incrcases from 0.0 to 3.0 pixels. In
addition to the positional noise in the viewed image,
there is aso the constant positional noise associated
with the database mentioned above and the viewed
stars arc subjected to variation in brightness of 0.4
units stellar magnitude (standard dcviation) resulting
in the loss and addition of viewable stars. The average
amount of time spent in the identification routine,
measured 0.13 s and did not vary greatly with the noise
level.

Fig. 7;] shows the identification rate. This is

two or more correct star identifications occurred and
dividing by the total number of oricn tat ion prescnted
(10,000). No more than a single misidentificd star was
allowed per orientation for every 4 stars correctly
identified. Recall that the verify routine insures

that the misidentified star is within the FOV of at
lIcast onc of the identificd stars so that the attitude.
intimation should not engender too much crror. A
misidentification occurs if the routine identifics stars
(docs notreturn NUI 1)) and the identifications fail to
meet the above condition. This only happened when
the positional noise was set a 3 pixels, occurring with
apr obability of 0.0020, or 20 out of 10,000 times. | n
all of the remaining orientations (not shown in the
figurc), the agorithm returned NUI 1. indicating a
failure to identify any stars satisfactorily. The algorithm
consistently identificd the stars at a greater than

PADGETT & KREUTZ-DELGADO: A GRID Al GORITHM FOR AUTONOMOUS STARIDE NTIFICATION

160 —.

00 @@~ noooo

0.9s

0.90

0.85§

0.80

Probabllity of Identifled Sensor Orlentations

Q.75

0.70

0.65

0.60

050 | -+ g - - . .
¢ 050 T 1$0 200 250 300
Posftion Error (pixeis)
Fig. 7. Star identification probability versusimaged position
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99% rate up to a noise level of 1.5 pixels where the
identification rate was evaluate.d at 9S.9%.

The second set of values wc are interested in arc
the average number of identified stars per orientation
along with the number of misidentifications pcr
orientation. These numbers are useful in determining
how likely the attitude estimation will be to the correct
one. The greater the number of correct identifications,
the better the final estimate.ﬁ;ig. 8Jshows both of
these values over the specificd noise range. Note that
even at very large noise levels the number of stars
misidentified is relatively small, averaging no more
than 0.12 stars per orientation. It is also fairly constant
wit h no measured growth after 1.S pixels. A more
disturbing trend is the rather steep drop in the number
of identificd stars. The agorithm appears |css robust
than it might bc. The next measurements shown in

1} Ig. % indicate why this drop occurs.

in Fig. 9 wc show the percentage of closc ncighbor
stars that arc corrcctly found for the reference stars
tested by the algorithm. Recall that if the wrong
close neighbor is found the pattern is likely to be
in the wrong oricntation so that correct matching is
impr obable. 'J 'he loss of the correct closc neighbor star
can occur ina number of ways. Yirst, the reference
star may bc too close to the cdge of the sensor, In this
implementation, if the distance from the pole star to
its orientation star is greater than the distance of the
polc star to the edge, no pattern is formed, A sccond
causc of awrong close neighbor star is due. to its loss
from the image. As the close neighbor star could bc
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any visible star, it could possibly be near the limit of
the scensor, so that it may not appear in the image. duc
to noise. A related phenomenon is the additionof a
star below the limit of the sensor that satisfies the
criteria for being the close neighbor. Finally, simple
positional noise may promote another star to close
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Fig. 10. Number of matches per correct pattern orientat ion versus
position accuracy.

ncighbor for a given reference star. All of these factors
limit the number of correctly oriented patterns that are
to be matched against the database patterns.

As the figure shows, such edge effects and the loss
or addition of stars apparently are quite noise sensitive
and have a substantial effect on the number of correct
reference stars patterns that can bc formed from the
sensor image. Even a no positional noise (0.0), on
average only 52.2% of the reference stars in a given
imagc will have a correctly oriented pattern formed.
The addition of a large amount of positional noise has
a substantial effect so that a alevel of 2 pixels, the
percentage of correctly oriented patterns is reduced
by half. In fact the curves of Figs.8 and 9 are almost
identical suggesting that animprovement in finding
the correct closc neighbor will resultinmore stars
identified pcr orientation and ultimately increase the
overall identification rate. It is also important to note
that the identification algorithm can fail toidentify the
correct close neighbor at a much higher rate than the
actual identification failure. This is duc to the relatively
high « value which increases the likelihood of finding
acorrectly oriented pettern (therc arc simply more
chancre togct it right).

1*‘inally,ﬁ‘ig.](ﬂshows the average numbei of
matches when {he” correct refercnce-close  neighbor
star pair is found. As onc would expect, the number of
matches in a cortcetly oriented pattern is not g1 catly
affected by the noise levels encountered here. The
large size of a grid cell with respect to the noise
level insures agicat deal of corrclation betwecen the
correctly oriented sensor pattern and its database
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counterpart. ‘'The deviation in values across the entire

“ range-of positional mist is only five matches, so that

improvement of the grid algorithm with respect to
the matching procedure is unlikely to produce a great
benefit.

B. Experiment?

In the second set of experiments, we show that
some simple modifications to the grid algorithm allow
identification rates in excess of 99.0% over a wider
range of noise levels. ‘1o accomplish this wc do two
things. Tirst, wc alow patterns to be tested even
when the distance to the closc neighbor is greater
than the distance to the border of the sensor. As
stars near the edge of the sensor will have their close
neighbor in the 1OV roughly 50% of the time and
the likelihood of having a significant match with an
arbitrary database pattern is no greater than the
typical case, alowing such patterns should raise the
percentage of correct oriented patterns found without
serioudy incrcasing the number of misidentified stars.
The second modification wc make addresses positional
movement on the sensor plane due to noise and the
addition of unaccounted for stars. Both of these factors
reduce the probability of finding the correct closc
neighbor. "lo limit their impact, each sensor star tested
is allowed to construct two patterns. | f the first pat tern
generated dots not result in a sufficient match with the
database, the next best closc neighbor is sclected and a
pattern is formed with it. The addition of this routine
will result in an increase in the misidentification rate
as wc arc in essence, doubling the number of allowed
matching operations. }lowcver as the misidentification
rate is quite low (scc }ig. 8) this should not be too
prohlematic.

Fig. 11{shows a combination of Figs. 7 and 9 along
with the Values obtained by the modified algorithm
over the same range. The modified algorithm takes
dlightly longer (0.2,1 s versus 0.13 S) on average than
dots the routine of Fxperiment 1. The time aso grows
along with the noise level (as onc would expect) so
that at no positional noise the runtime averages 0.17 s
and at 3 pixcls positiona noise it is up near 0.23 s pcr
01 icntation. In addition, the number of misidentified
stars in successful identifications is higher in the
modified algorithm. It has increased by a factor of 10
over the original implementation, however it is still
relatively small (as compared with the number of stars
identificd) and ranges between 0.2 (with no positional
noisc) up to 0,5 at 3 pixels. No increcase was observed
in the number of totally misidentified orientations, they
were again found only with positional noise of 3 pixels.

When using the modificd agorithm, the noise
level below which a 99.0% identification rate could
be maintained was extended to 2.0 pixels (a 98.8%
identification ratc occurred at 2.5 pixels). With this
SENsor configuration and set of parameters the
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Fig. 11. Star identification probability vetsus position accuracy.

modified grid algorithm appears to be quite stable over
a wide range of positional noise (over 2 arc minutes).
It is also somewhat insensitive to inaccuracies in
brightness determination. Although the algorithm
makes no explicit usc of the brightness valuc of the
stars in identification, it is used in selecting the stars
in the database and in ordering the sensor objects to
select the most likely catalog stars. The major effect
that a greater brightncss variance has is in the numbe:
of unexpected additions and deletions to the imaged
field. Increasing the brightness deviation from 0.4

to 1.0 results in about 12.3 lost stars per oricntation
and the addition of 5,5 others. This greatly impacts

the ability of the algorithm to locate the correct close
neighbor which inturn reduces the identification rate.
For this level of brightness noise, the identification rate
with 2 pixels of positional noise drops from 99.60/0 at
0.4 to 97.7% at 1.0 units apparent stellar magnitude.
Fiven at 1.5 units positional noise, the identification
rateis a full point lower (99.9% to 9S.9%).

IV. DISCUSSION AN[) ANALYSIS

‘1 'he grid algor ithm is conceptually quite simple,
and represen ts astraight-forward approach to star
identification. The matching opcration and 01 icntation
star selection arc easily analyzcd in a probabilistic
fashion (as shown below) andshouldaidin selecting
suitable parameters and determining expected
performance. As the simulations demonstraie, the
algorithm provides a good identification 1atcover a
wide rangc of scnsor noise values.
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Thc simplicity of the agorithm allows for quick
implefuentation, debugging, and analysis. The reduced
memory rcquirements for the algorithm also afford
many benefits. The obvious advantage is in the size
of the onboard star catalog. For the same amount of
memory, an algorithm that consumes less resources
can incorporate more stars in its database thus
allowing a more accurate sensor with a smaller FOV.
Assuming the identification and misidentification
rates for stars arc the same, a smallcr, more accurate
FOV results in a better attitude estimation. On the
other hand, for the same size FOV, asmaller database
can result in substantial time savings in searching the
catalog resulting in quicker identifications. Other star
identification routines [5, 12] require substantially more
memory with a smaller size onboard catalog.

The positional noise levels associated with the
technology of today arc typically reported by the
manufacturers of the sensor in the subpixel range. 1 ‘he
standard deviation used in our simulations (0.4 units
stellar magnitude) is afso a typical value.. However as
the sensor platform (an incrtially stabilized spacecraft)
is not entirely motionless and the identification is
expected to occur after system failure, the robustness
of the algorithm over a wide. range of noise is
likely to improve system reliability. This is not the
case. with many other star identification routines
(especially polygon matching) that typically only work
for a specified rather narrow noise band [5, 9, 12].
‘I'his stems from the need to preselect a number of
additional sensitivity parameters. in the following
subsections wc provide a more detailed account of
memory and time usage and in the last section outline
a probability model uscful for understanding overall
agorithm pcrformance.

A. Memory ant{ lime Performance

The amount of memory consumed by the database
for the grid identification algorithm is quite easy to
calculate. If we let

n = |R| a = [11i]|
where a is the average number of stars per patiern
cnt1 y in the lookup table. The total amount consumed
by Ris
me mory(R)=:2nu

assuming that the location of cach star is given in
terms of ascension and declination and u is the
memory alocation unit. The amount of memory
consumed by the lookup table (J.T) is

memory(1.1) =- nau

so that thetotal memory usagc of 1) is

memot Y(1)) =n(a-{ 2)u.

Fach additional star added to the onboard catalog
requires a*ubytes of extra storage.

The additional time required as we let R grow is
also easily calculated. Ignoring the sorting costsand
maintaining a constant, the amount of time required in
searching LT is the only cost dependent on the size
of R. Fach additional star in R adds a star indices
to 1.1. Since this cost is reflected in the amount of
time required to find all reference star indices at a
certain bit location, wc simply calculate the additional
time required for onc such operation and multiply by
the total number of calls. The additional time spent
extracting all star indices from a single row of LT by
the addition of a single star is a/g? This is multiplied
by the number of accesses which is simply the number
of patterns checked co and the average number of
stars per pattern or a. The total increase in the number
of catalog star indices found pcr orientation with a
single addition of a star in R is a’ca/g>.

For the sensor configuration and paramecter settings
in our simulation, this works out to about 12 additional
memory requests from 1T per oricntat ion for each
additional star. Given the speed of today’s main
memory the addition of even a thousand starsto R
is unlikely to have a dramatic effect. To determine if
this is t1 uc, wc increased the size of R by 2000 stars,
for a total of approximate ecly 15,000 stars, the average
time of identificationincreased from 0.20S sto 0.2.77 s.
An average increase of about 0.07 s per orientation.

B. Probabilistic Modelforthe Grit{ Algorithm

Wc have also derived a simple probabilistic model
for the grid algorithm in star identification. The god
here was to clarify the important features of the star
identification task so that one could:

1) determine analyticaly bow parameter changes
might impact performance characteristics,

?2) identify potential areas of improvement in the
algorithm,

3) identify variables necdedto provide
performance characteristics for parameter and sensor
configuration settings not tested by simulation (due to
cost, time limitations, computing resources, ctc.).

We made a number of simplifying assumptions
about the task, the three most important being that
the patterns generated from the sensor or for the
databasc arc csscntially random with respect to each
other, that all patterns have the. same number of stars
a, that identification consists of two successful star
matches (we ignore misidentification though it is easily
incorporated) and finally that a binomial distsibution
is an adequatce characterization of the identification
process.

If we can identify the probability of identifying a
single reference star in the sensor field py,, then the
actualsuccess rate p, for identifying two stars can be
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big. 12.liventspace for grid star identification algorithm.

given in (3)

Ps =1- (1 — ])N)ptca - pccap:x(] - P:s)ptca} l‘
3

The variable p.isthc probability of a single tested
image star to be an element of R Then p.cais simply
the expected number of sensor stars in R that go
through the matching process. 1he value of p. depends
on sensor bt ightniess noise and the choice for c.
Yor brightness noise lcvels of 0.0, 0.4, and 1.0 units
stellar magnitude (1 sigma) with ¢ =3, the valueof p.
obscrved during the simulation was 0.924, 0.840, and
0.710, respectively.

10 determine the appropriate value for pg, two
things nccdto be considered. First, the probability
p,,, of identifying the correct closc neighbor given
that the sensor star is in R, must be found. Thesc arc
presented for the simulations in tigs. 9 and 11 and
again vary with the amount of noise (both positional
and brightness). %c.end, the probability that a properly
oriented sensor pattern and the corresponding catalog
pattern have no less than min_mat matches must be
determined. To calculate this, we can look at the
average number of stars in the sensor pattern to be
mate.hcd a, (17.834 for the. simulation) and the average
number of matches actually obtained by the agorithm
for a given noise Ievel (Fig. 10). From these valucs we
can determine the probability of a single match p,,.
Again assuming a binomial distribution, the cxpression
for pss is given in (4)

mill- mat- 1

N [C@iyph (1 - pu) ]

i O )

Pss = Pu 1-

4)

hiig.]Z;‘I)rcscnts the. region of spacc weare hoping to
identify in a more intuitive manner. The following list
provides a conceptual decscription of each region.

S: the sct of sensor objects in an arbitrary
orientation.

T:the subset of S that the gridalgorithin attempts
1o identify,

G: the “pood” reference starsin S (i.e, SN R).

M:the subset of T with no less than min. mat
matches to some patternin the database.

“The probability p,,is actually the probability of
obtaining no less than min_mat matches givenr is
mT n M N G. Thisisrcpresented by the small white
region located there. The probability p; then is simply
the probability of at least two elements being in the
white region.

A similar analysis can be employed for determining
the expected misidentification rate. We can do this by
assuming that the distribution of pattern vectors in the
database is random. Then making at least min_mat
matches between two randomly drawn patterns can
be expressed as another binomial distribution, In this
case wc have a possible matches in a space the size
of the pattern vector g2 so that the probability of a
single match is a/g®. Ignoring the p, term in (4),
and substituting a/g? for p,,,, this will express the
probability of generating at least rein_ mat matches
between asensor pattern and an arbitrary pattern
in the database. With this probability wc can then
determine the misidentification rate in fashion similar
to that done in (3).

Flowever small the misidentification rate is,
incorporating more patterns into the database or
increasing the number of sensor patterns tested will
cause more spurious identifications. in future work
we hope to explore ways to keep the misidentification
rate as low as possible. One simple method would be
to have a segmented database so that a typical sensor
pattern would not necessarily be compared with all
possible patterns but some smaller subset. A number
of different indices might be used to determine which
subdatabasc to look at (star density, background
brightness, etc.), but wc have yet to experiment with
this method.

V. CONCLUSION

The grid algorithm wc demonstrated here provides
robust star identification over a wide range of sensor
noisc without parameter readjustment. The algorithm
compares favorably with current published star
identification techniques in terms of accuracy and
performance. ‘I ‘he simplicity of the algorithm facilitates
the development of probabilistic modclsuseful for
performance prediction and cvaluation. Currently
wc have ported the algorithm to a chip in the Hlight
System lestbed at JPI. for further evaluation. luturc
testing will also involve incorpol-sting the algorithm
into an on-line testing systicm at Table Mountain
QObservator y.
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